[Oe List ...] On solar energy
George Holcombe
geowanda at earthlink.net
Sat Dec 2 10:47:22 EST 2006
An important statement on the future from Alternet.
The Revolution Will Be Solarized
By David Roberts, Grist Magazine. Posted December 2, 2006.
Author Travis Bradford says that solar energy will eventually break
the hold that centralized power companies have on our energy grids.
Solar power has been the Next Big Thing for decades now, yet it
remains a niche player in the energy world. The problem of
intermittency is unsolved, up-front capital costs remain high, and
surging demand for polysilicon, a key component of solar panels, has
recently outstripped supply, stifling production.So when someone
claims that within decades solar photovoltaic technology will come to
dominate the world's energy portfolio -- with or without subsidies,
with or without rising fossil-fuel prices, with or without new
environmental legislation -- one could be forgiven a degree of
skepticism.
But Travis Bradford is no hippie idealist. The author of Solar
Revolution: The Economic Transformation of the Global Energy Industry
spent the early years of his career in corporate acquisitions and
private equity funds -- not fields that reward irrational exuberance.
His book is based on research and analyses done at his Massachusetts
think tank, the Prometheus Institute for Sustainable Development,
working from what he claims are conservative assumptions about market
and capital trends.
Those trends, he says, are inexorable: Just as revolutions have
transformed the information and communication sectors, solar power
will break the hold of sclerotic, centralized power companies.
Roberts: Your book's central claim is pretty bold.
Bradford: Thanks for recognizing that.
It's not just that we're moving toward alternatives, it's that we're
moving toward distributed [power generation] as well. If both of
those are true, solar is the only viable option.
Solar is different from other energy technologies in that it delivers
energy at the point of use, directly to the end user. That allows it
to circumvent the entire supply chain. It's not another option for a
utility, it's a competitor to a utility -- the first time utilities
have really had a competitor.
The best way to describe it is with an anecdote about cell phones. We
used to have these monopoly telephone infrastructure players. They
controlled everything, and they had all the processing power at
central switching stations. You had these dummy terminals that you
just picked up; you had a connection, but no brains. All the brains
were in the center of the network. And then these cell-phone
producers came along and, in the Telecommunications Act of '96, were
given access to the telephone grid. They began to go completely
around the supply chain and offer competing services to the same
customers, wireless and easier. The telephone utilities ... first
they ignored it, then they tried to fight it legislatively, and when
they lost that they tried to fight it economically. Eventually they
just decided, screw it, we're going to buy them. Today those are the
most profitable parts of their business. That's the transformation.
This also happened in computers. We went from large, centralized
mainframes with dummy terminals to a distributed hybrid architecture.
Solar is slowly going to begin to unwind the existing utility
economics, to the point where utilities decide they have to get in or
they risk losing their core business -- exactly the transformations
we've lived through in the last 20 years.
The solar revolution does not require new breakthroughs in
technology. You could do it with the technology we have, scaling it
up and learning how to do it incrementally better every year -- which
is what naturally happens with scale.
Roberts: Solar is mainly used for electricity, which represents just
over a third of energy use. How do you account for transportation fuels?
Bradford: We'll never solve the problem of transportation until we
reconnect the transportation and electricity infrastructures. There's
not enough liquid fuels.
I'm not a big fan of biofuels -- on close examination their
environmental impact is wretched. What it does is export part of our
energy price for transportation through the grocery store, right? We
end up subsidizing the cost of our transportation infrastructure in
the price of food stocks. Biofuels will solve some problems, but at
the end of the day there's not enough land in the entire Mississippi
River Valley to meet our transportation needs. And then where would
we get food from? There's cellulosic, but that's only another 10
percent.
There are real capacity constraints in any transportation-fuel option
until we reconnect it with the electricity infrastructure. You do
that either with plug-in hybrids or with electrolyzed hydrogen. My
guess is that batteries will be better for transportation purposes,
and electrolyzed hydrogen for stationary applications, because fuel
cells on site are much easier to make than fuel cells with the thrust
needed in automobiles.
Other than industrial processes, we use thermal applications in
heating and hot water. There are electric analogs to both of them. We
can have electric hot water heaters just as easily as gas hot water
heaters. We can have electric home heating. Historically it was
believed that thermal applications were about a third the price of
electricity-based heating applications, but that was based on $2 per
thousand cubic-foot natural gas and whatever the prevailing price of
electricity was. These have come a whole lot more in parity, and in a
lot of places in the world, electric heat's the way they go.
Everything has to reconnect. The infrastructures that separated --
first at the beginning of the century, and again in the middle of the
century for natural-gas infrastructure -- have to reconnect. And
we'll need a lot more electricity to drive that.
Roberts: A lot more. What do you do about coal?
Bradford: Coal is the enemy of the human race.
Roberts: There's my pull quote. Do you think solar's going to beat coal?
Bradford: Solar's going to change the electricity infrastructure in a
way that will make coal unnecessary. This distributed architecture is
going to get to the point where wind and geothermal, where available,
take over a lot of the baseload needs; solar will meet a lot of the
peak needs, and some of the base needs during the day. The
combination of these portfolios will make coal irrelevant. Wind and
thermal are nearly as cheap as coal, if not cheaper, and coal still
enjoys tremendous subsidies. Under certain circumstances nuclear
power would be OK, but I highly doubt those circumstances can be met.
Solar is a universal system available inversely with the wealth of
the nation. The richest countries have less and the poorest countries
have more.
Roberts: What about areas that get little sunlight -- like, say,
Seattle?
Bradford: The sun is shining, just not as brightly here as it is in
the desert. Seattle gets about half the sun of Los Angeles, for
instance.
Historically, the cost of solar drops about 5 to 6 percent per annum,
just based on the volume of growth and natural learning. If that
continues -- and I use even more conservative estimates than that,
showing the learning rates slow down a little bit -- you get to the
point that solar in Seattle is cost-effective 10 years later than
solar in Los Angeles. Ten years is not a very long time in terms of
energy infrastructure. It's the blink of an eye, when you're thinking
about planning and zoning.
Solar's taking off right now in Germany and Japan, which have as
little sun as Seattle. It's taken off because of some good political
will; they've ended up subsidizing renewables as much as they've
subsidized existing fossil-fuels infrastructure. They've leveled the
playing field a little bit better than we have.
Solar's not going to be the only solution. It's going to be part -- a
surprisingly large part -- of a portfolio of solutions. Its limits
are not a problem we're going to have to deal with for at least two
or three decades. By the time we reach a point where solar's problems
might be binding, we'll already have a set of options to deal with
them -- storage solutions will be three decades ahead. By that time
we're generating a quarter of our energy on solar anyway.
Roberts: A good problem to have.
Bradford: Exactly.
Roberts: It's always the supply side that gets press and attention,
but utilities and utility regulations are a bottleneck. What's going
to happen grid-wise?
Bradford: Deregulation has allowed utilities to squeeze their spare
capacity. They've been able to reconfigure assets and put off
upgrading their infrastructure. The grid today is deeply
underinvested in. So it's getting frailer -- that's what the blackout
in Brooklyn this summer was all about. The upgrades are too
expensive; they can't afford it under the current rate structures.
The grid infrastructure is problematic, but distributed solutions
help solve that. The utilities have already been moving toward
distributed natural-gas plants. Solar provides a great alternative
for utilities that don't want to invest in line extensions and
upgrades. Ultimately utility providers are going to figure out that
they want this hybrid infrastructure. They'll get to a point where
they're participating in and pushing the process rather than ignoring
or resisting it.
I've talked to a number of senior managers and board members at
utilities around the country. One of them -- a board member of a
Northeastern utility -- said to me, "We don't know what to do, but
the writing's on the wall, and the conversation is occurring at the
board level at every utility around the country: How do we migrate
our systems to a renewable, distributed system?" The conversations
are being had, but these are slow-moving entities.
Roberts: Bush's Asia-Pacific climate pact is a trade deal to
facilitate U.S. nuclear and coal industries selling their older
technologies in the developing world. There's a rush to build up
traditional electricity infrastructure in the developing world. Will
it succeed?
Bradford: They're going to be successful in some places. But the
reality is that grid infrastructures are not economic in low-density,
low-income nations. If they were anywhere close to economic they
would have been built already. You'll have integrated policy
environments like China, where they've got 96 percent grid
electrification and lots of coal. But in the vast majority of the
under-electrified or non-electrified countries, solar's already the
cheapest option.
Roberts: It's frequently said that the U.S. is falling behind in 21st-
century energy industries. Is it true?
Bradford: I often claim that we are in danger of trading our
addiction to Middle Eastern oil and Russian natural gas for an
addiction to Chinese polysilicon and solar cells. That is a risk.
But if you look at where the materials come from for the solar
industry today, while a lot of the cells are made in Germany and
Japan and a few in China, a majority of the silicon they use comes
from the United States. We're shipping them the feed stocks, and
we're making a tremendous amount of money doing it. That's where all
the profit is in the supply chain right now, because of the shortage.
The U.S. has lost the glamorous parts of the supply chain. But the
profitable and the potentially path-breaking parts like thin-film
solar are still here. If we don't get in the game, those will go
away, too. We are at risk of losing those, but right now we actually
have a pretty strong position, at least in solar.
Roberts: Are you a "crash and contraction are inevitable"
environmentalist or an Amory Lovins-style techno-optimist?
Bradford: I am definitely in the latter family. The way I
characterize those two schools of thought are the defense school and
the offense school. The defense school is filling the sandbags --
they think we have passed the point of no return, so their strategies
to cope are defense-based strategies. My deepest concern is that the
defense crowd is right. But I'm not ready to play defense yet.
If we're going to solve the problem, the solar revolution is a
necessary and significant component of the solution.
Roberts: If.
Bradford: We all live with what we believe to be true and what we
fear to be true.
Roberts: Will the decentralization of power production be accompanied
by a decentralization of political power?
Bradford: Solar power is empowering. All things being equal, people
like to control the resources upon which they rely. That's why I
spend time thinking about solar technologies rather than centralized,
easily controlled technologies. At the end of the day, sustainability
includes distributed power and democratization.

Tagged as: energy, solar power
David Roberts is a staff writer at Grist.
George Holcombe
14900 Yellowleaf Tr.
Austin, TX 78728
Home: 512/252-2756
Mobile 512/294-5952
geowanda at earthlink.net
-------------- next part --------------
An HTML attachment was scrubbed...
URL: /pipermail/oe_wedgeblade.net/attachments/20061202/b9cc6b66/attachment-0001.html
-------------- next part --------------
A non-text attachment was scrubbed...
Name: 85x10-digg-link.gif
Type: image/gif
Size: 282 bytes
Desc: not available
Url : /pipermail/oe_wedgeblade.net/attachments/20061202/b9cc6b66/attachment-0001.gif
More information about the OE
mailing list